Дэвенпорт Г. - Высшая арифметика. Введение в теорию чисел

Скачать

Дэвенпорт Г. - Высшая арифметика. Введение в теорию чисел

Высшая арифметика. Введение в теорию чисел

Год выпуска: 1965

Автор: Дэвенпорт Г.

Жанр: Монография

Язык: РУсский

Издательство: М., Наука

Формат: DjVu

Качество: Отсканированные страницы

Количество страниц: 176

Описание: Высшая арифметика, или теория чисел, изучает свойства натуральных чисел 1, 2, 3, ... Эти числа интересуют человека с давних времен. Античные летописи говорят о том, что уже тогда арифметику знали глубже и шире, чем это было необходимо для нужд повседневной жизни. Но систематической, самостоятельной наукой высшая арифметика становится лишь в новое время, начиная с открытий Ферма (Fermat, 1601–1665).

Многие простые и общие теоремы высшей арифметики естественно возникают из вычислений, однако при доказательстве этих теорем часто встречаются очень большие трудности. «Эта особенность, — по словам Гаусса, — вместе с неистощимым богатством высшей арифметики, которым она столь сильно превосходит другие области математики, придает высшей арифметике неотразимое очарование, сделавшее ее любимой наукой величайших математиков».

Теория чисел считается обычно «чистейшей» ветвью чистой математики. Она имеет очень немного прямых приложений к другим естественным наукам, но обладает одной общей с ними чертой: теория чисел развивается из эксперимента, роль которого играет проверка общих теорем на численных примерах. Такой эксперимент необходим в любой области математики, но в теории чисел он играет бóльшую роль, чем где бы то ни было, ибо в других областях математики результаты, полученные таким способом, часто бывают неверными.

Автор этой книги хорошо понимает, что нематематик не сможет прочесть ее без труда. Трудность частично лежит в самом предмете. Этой трудности не избежать, пытаясь использовать несовершенные аналогии или проводя доказательства, выражающие основную мысль, но неточные в деталях. Такая попытка может лишь уменьшить интерес к этой наиболее точной из наук.

В этой книге теоремы и их доказательства часто иллюстрируются численными примерами. Примеры обычно очень просты и могут не удовлетворить читателя, который любит вычисления. Задача этих примеров — пояснить общую теорию. Вопрос о наиболее эффективном проведении арифметических вычислений выходит за рамки данной книги.

-Опубликовано группой

Скачать